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AWnd-SII:alIow. euetItiaIIy inextcnsioaal. simply-supportecl arches under ccnttal point IoacI are used
extensively to illustrate dle cusped imperfectioll-seasilivity of an unstabie-symlDdric bifuractioll. Often
these are made in the laboratory by simply buckling astraight strut between fixed abutments. and are therefore
prestressed. We give here a concise buckling and post-buckling analysis of such an arch with any delP'ee of
prestress. and show that the critical bifurcation load varies linearly with the prestress. The immediate use of the
inextensibility greatly simplifies the analysis and leads to neat closed-form solutions which alP'ee extremely
well with the limited theoretical and experimental results available from other sources.

I. INTRODUCTION

Following the classical work of Roorda [1-4] at University College London, very thin simply­
supported steel arches under central point load are used extensively to illustrate the cusped
imperfection-sensitivity of an unstable-symmetric point of bifurcation [5, 6]. These are some­
times rolled, to give a pure stress-free arch, but are more often made simply by buckling a
straight strut to give a pre-stressed arch.

Roorda tested an arch of each type, but only gave an analysis of the pure stress-free arch.
His theory for this employed two fourier harmonics for the deflected form, and included the
axial stiffness BA. the product of Young's Modulus and the cross-sectional area. This
axial compressibility gives a non-trivial fundamental path before buckling which greatly
complicates the analysis. while it is clear from the dimensions of his test arch that this
compressibility is exceedingly small and could validly be neglected. Indeed the axial com­
pressibility can be equated to zero in his final results by asymptotically setting BA to infinity:
this greatly simplifies the form of solution, without noticeably altering the numerical values for
the type of arch under discussion.

In this paper we give a theory for a shallow arch with any degree of pre-stress (including
zero) which uses axial inextensibility from the start. The arch has then a purely trivial
fundamental path with no deflection before buckling (under a two-harmonic approximation)
allowing a neat closed form analysis for the critical load pC and the equations of imperfection­
sensitivity.

For the pure. stress-free arch, a comparison can be made with the solution of Roorda. which
can be found unchanged in the book of Huseyin(6]. Our solution for pC,

agrees in form with Roorda's asymptotic result which has the alternative numerical factor 6411:
Roorda's pC is therefore 1.032 times our own. Here EI is the bending stiffness of the arch, His
its rise and L is its curved length. When normalized with respect to the corresponding pC, our
equation of imperfection-sensitivity is

which is, remarkably. identical to that of Roorda. Here P is the load-earrying capacity of an
imperfect arch in which the load is off-set from the centre-line a distance ~L.
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For the pre-stressed arch made from an initially straight strut, no theory seems to be
available for comparison, but our

agrees well with experimental results, as does our imperfection-sensitivity

The present succinct analysis tbus gives us results agreeing well with existing theory and
experiment. It is simpler than that ()f Roorda and Huseyin by virtue ()f its trivial fundamental
solution. It miaht of course be argued that the experimental arches do indeed deftect sym­
metrically before buckling, but this is almost entirely due to third and m.ber harmonics rather
than the minute axial· compressibility. These higher harmonics would have to be taken into
account in a more precise solution.

Our analysis shows for the first time the effect of initial pre-stress, and ids interesting to
note that pC decreases linearly with pre-stress as measured by the initial downwards stress-free
amplitude Ao. This continues until an arch with Ao= 3H buckles at zero applied load (within
the present approximation), and an arch with greater Ao would jump spontaneously from its
unstable unloaded state.

2. INEXTENSIONAL THEORY

Our aim here is to analyse shallow inextensional arches, pinned to fixed abutments and
loaded by a dead vertical load nominally at the centre. However, since we wish to embrace
within a single formulation, pure arches, buckled struts and even arches which would be
stress-free in an inverted configuration, it seems convenient to employ our earlier strut
formulation [5]. The abutments then simply impose a constant value of the end-sh9rtening
function.

To deal with the prestress, the strut is presumed to be deformed into an initial bent state,
and is then ima,med to be stress-relieved: it is subsequent chanaes of curvature from this initial
state that induce strain energy and associated bending moments.

After a Fourier series expansion of the normal deftection, only the leading two terms are
retained. The inextensibility of the centre-line together with the constraint imposed by the fixed
supports then reduce the degree of freedom to one. In fact the state of the arch is constrained
to lie on a closed curve in the space of the two harmonic amplitudes, akin to the neat
topological study of strut and arch buckling due to Zeeman[7] which inspired this present work.

2.1 Strain energy
For the strain enersy we proceed in the same way as for the inextensional strut of ([5) p 28),

but allowing for the extra effect of full stress-relief in a general deformed state. Let us consider
the initially straight, simply-supported, strut of length L shown in Fig. 1, and oblige it to
undergo an end displacement! in the axial direction as shown. We assume that the strut is
inextensional, and has a ftexural stiffness EL

The curvature of a small element is given by

where a prime denotes differentiation with respect to x. We have only strain energy of bending
to consider, which is given by
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Fig. 1. General deformed shape of the inextensional arcb, and the stress-relieved state.

We now suppose that, at a certain deformed shape wo(x) with end displacement ~o as shown,
the system is stress-relieved, such that the elemental bending moment M and the stored strain
energy drop to zero. The moment-curvature relationship takes the form shown in Fig. I and we
can see that the elemental strain energy for a general deformed shape w(x) is now,

where Xo is the curvature in the stress-relieved state. Integrating, we can now write the total
strain energy as,

1 lLU = - EI (X - Xo)2 dx
2 0

= ~ EI LL [WW2(1_ w,2rl- 2wwwo(l- w,2r"2(1- w;/r I/2

+ wo2(1- W02)-I] dx.

Expanding all these terms as power series, we have,

u = ~ EI LL [(W02+ wo2wci2+W(;2 w<i
4+ ...)

-2wo( 1+~ Wci2+~ wo4+ •. -) wN
+ W

N2

-wo(1+~ W02+~ wci4+.. -) ww
W,2+ W

N2
W'2+ • ••Jdx, (1)

which is arranged in ascending powers of wand its derivatives. For a linear eigenvalue study
we would need merely the quadratic terms.

The corresponding total end constraint ~ is given by.

~=L-LLcOS8dX

i
L

(I 1 1 )= - W,2+- W,4+_ w16 +··· dx
o 2 8 16 '

as in our book. Again, a linear eigenvalue study needs just the leading term.

(2)
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2.2 Expansion in Fourier harmonics
After the general formulation we now restrict the deflection functions wo(.x) and w(x) to

appropriate Fourier harmonics. We suppose that the arch is initially deflected upwards with a
rise H at the crown, and is loaded perfectly centrally by a dead vertical load P. Later we test
for the effects of imperfections by allowing a small offset of the load, but for the moment we
restrict the study to this perfect system.

We start by assuming that in the stress-relieved state, before the arch is fixed between the
rigid supports, the deflection wo(x) is a half-sine wave as shown at the top of Fig. 2. We thus
write,

A
. 1TX

wo= oSlnT'

where Ao, like wo, is positive measured downwards. This allows for the study of a variety of
states of initial pre-stress, by altering the value of Ao• We note in passing that a symmetry­
destroying imperfection could be introduced here, in the form of pre-stress, with the addition of
a small second harmonic term.

For a full harmonic analysis of the arch we could expand w as

w(x) = I 01 sin i1T.LX.
;=-1

However, we truncate the series after the leading two terms, and write

(3)

where 01 and 02' like w, are positive measured downwards. This reduces the system to one
which at first seems to have two degrees of freedom. But the inextensibility and the constraint
of the fixed supports impose a further condition so that 01 and 02 are not independent; we thus
have some locus in OJ space, 01 = /(02) say, which the system is obliged to follow, and it is
reduced to a single degree of freedom.

This may seem a somewhat crude approximation to a continuum with an infinite number of
degrees of freedom, but it is remarkably successful, as indicated first by the simple closed-form
solutions obtained and secondly by the good agreement with experiments. It clearly closely

-!-.
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Fig. 2. Arch seometry and description.
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resembles a siftlle dqree of freedom Rayleilft-.:-Ritz approach•. Its great virtue is its simplicity,
especially in that it exhibits a trivial fundamental path of equilibria, Q,. =0, Q. =- H =const,
for all loads P. This is a significant aid to solution, since the description of the nonlinear path
for the true arch is in itself a considerable problem, and one which is largely irrelevant as far as
the bifurcational response is concerned. These are important points, and we shall be returning
to them at intervals later.

So, substituting the assumed forms for Wo and w into the general strain energy function (I)
we are left with a number of integrals of sinusoidal products to evaluate. These exhibit both
quadratic and higher-order orthogonalities, and lead to the diagonatized strain energy function,

(4)

which is arranged in ascending powers of Ql and Q2' Here constant terms arising from just Wo

and its derivatives have been ignored since we are concerned with variations of the strain
energy, never its absolute value.

2.3 The constraint condition
. We now turn our attention to the constraint condition imposed by the rigid supports, and

seek a way of expressing the resulting locus in Q. - Q2 space. This is to be written as a Taylor
series, first in the two variables, and secondly via an intrinsic perturbation scheme, in Q2 alone.
The latter is only appropriate if the locus is single-valued in Q2' although during buckling Q2
reaches a maximum and then falls again to zero as the arch finds its final, upsidedown,
equilibrium conftgwation. The analysis is thus essentially localized, which falls into line with
the philosophy of structural mechanics, where interest focusses more on the failure itself, than
on the gross deformations of a failed system. The treatment can be seen as a useful quantitative
complement to Zeeman's topological study[7].

The intrinsic perturbation scheme is a concept we have used at length in the general
branching analyses of our book, and this simple example serves as an introduction to the more
advanced studies. Only two variables are involved, and we can write all derivatives explicitly,
without having to resort to the neater, but more obscure, subscript notation used elsewhere.

The constraint condition is simply i =const., where ~ is the end-shortening function (2).
Substituting the assumed form for w, given by eqn (3), into this expression and performing the
necessary integrations, we have,

We see that i is diagonalized (no QIQ2 cross term), and higher-order orthogonalities have set
some of the quartics to zero.

We are seeking a Taylor expansion, and thus must start with coordinates measured from the
unbuckled configuration. Introducing the incremental coordinate q. defined by

Q.=-H+q.. (6)

(see Fig. 2), we substitute this into eqn (5) to give,

I 11'2 2 3 11'4
~ =;j"r(q\ -2Hq. +4Q/) +64 V(q.4-4Hq,3+6H2q,2_4H3ql

+ 16q,2Q/-32Hq.Ql+ 16H2Ql+ 16Q24
) +higher-orderterms. (7)
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Here as before, constant terms are ipored, since we are to be concerned just with variations of
i, never its absolute value. We see that the expression has become more complicated, with the
appearance of linear and cubic terms.

But we have now a Taylor series, and can immediately write down the derivatives of i,
evaluated in the pre-buckled state F(q, =Q2 = 0), that we need later. We have for eumpIe,

ai IF 11l'2H[ (H)2] ai IF
iJql ::: - 2'"T 1+order L ' aQ2 ::: 0,

etc. and we need the cubic,

and the quartic,

In all the following analysis only the leading term of each series need be considered, since we
assume the arch to be of moderate rise, and hence,

A simple perturbation scheme. We start the perturbation analysis by assuming that the
system is constrained to follow a locus in coordinate space described by the parametric form,

This is substituted into the constraint condition i =canst. = K, which then becomes an identity,
since it is satisfied by all values of tbe sin8le independent variable Q" in the region of interest.
Thus,

(8)

This can be repeatedly differentiated with respect to Q2' Evaluation of the resulting equations in
the unbuckled state F then gives a series of sequentially linear problems, which are suc­
cessively solved for derivatives of ql with respect to Q2. These could be used to construct a
Taylor series form of the constraint condition in the one variable Q2' or we can use the
derivatives directly as in the following post-buckling study.

We note that the process can only be applied to an identity, or we would be evaluating (on
the locus of interest) before differentiating, thereby denying the system its. full range of
allowable deflection configurations.

Thus differentiating (8) repeatedly, we obtain.

etc. In the following work we require the first four equations, but the last two are lengthy and
are not given explicitly here.
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Evaluating at F and using the known partial derivatives of i, the first three equations give
directly,

(9)

and the fourth equation is reduced to,

(10)

Substituting the known derivatives, the first two terms can be neglected according to the
moderate rise approximation, (HIL)2 <c 1. This leads to the simple result for the fourth
derivative,

tr ,F 48
dd2~ =W· (11)

It is interesting to observe that this could have been achieved using no higher than quadratic
derivatives of i. Here we abandon the scheme. although further derivatives can be found by the
obvious extension, if necessary.

2.4 Lintilr eigellvalw altalysis
Before we proceed with the eigenvalue analysis to determine the critical load ot the arch, we

first write down the full potential energy expression, including the nonlinear terms required
later in the post-bueklilll analysis. Combinilll the strain energy (4) and the work done by the
load (-Pq.). and adoptina the earlier incremental transformation (6) so we have a Taylor series
as before, the potential energy function can be written,

(12)

Here as before constant terms have been ignored, and we have assumed that the arch in both
the stress-relieved and pre-stressed states is of moderate rise, thereby neglecting (AolL)2,
(HlL)2, and AoHlL2in comparison with unity. However, higher-order terms have been included
in the coefficient of the linear q. term, since we shall later investigate specifically an arch with
no initial pre-stress, for which the leading term vanishes; this turns out to be an unnecessary
precaution, but for the moment we retain the terms.

For any constant load P this is a Taylor series in q. and 02, and we can immediately write
down aU the partial derivatives that we shall need later. We have first,

(13)

etc. We shall also need the cubic coefficient,

(14)
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and the quartic,
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(15)

in the post-buckling analysis.
It must be remembered that configurations of the arch are subj«t to the constrain.t

condition, so qj and Q2 as they appear here are not valid generalized coordinates, the system
having just one degree of freedom. However, remembering the earlier parametric representation
of the constraint condition, ql = ql(~' we can substitute this andreprcl (J2 as the single valid
variable; we note that the function is already known implicitly, as derivatives evaluated at the
unbuckled state F.

Thus writing Vas,

at any fixed load level, we differentiate with respect to Qz. to obtain the equilibrium equation,

(16)

If we evaluate this equation at F we find on substitution from eqns (9) and (13) that the
condition is identically satisfied for all P. This confirms that there is a trivial fundamental
equilibrium state F(QI = - H. Qz = 0), for any load value.

To check the stability of this equilibrium state we form the second derivative,

(17)

Evaluating this at F gives the single relevant stability coefficient.

which we set to zero to find the critical equilibrium state C. This gives after a little algebra.

The last three, higber-order. terms can now be safely neglected. since the case of a vanishing
leading term (Ao=3H) is only of passing interest. Thus,

(1S)

We note that. for the range of pre-stress Ao~ 3H we have pC E; O. and can tentatively conclude
that an arch in this range of heavy pre-stress in the sagging sense cannot be persuaded into a
hogging configuration even under zero load. However the transitional case Ao == 3H is precisely
that at which the leading term vanishes, so this conclusion is subject to higher-order effects
which we explore no further here.



Bucklina and imperfectiolHelllitivty of arches 453

The arch fomatd from an initiaUy straight strut. Here Ao = 0, since in the stress-relieved
state the arch is straight. Thus we have the simple result for the critical load,

(19)

The arch with 110 initial prt-slrtSI. Here the stress-relieved state coincides with the
pre-buckled state and Ao= - H. This gives the critical load.

pC _2",4BIH
-I)' (20)

Higher-order derivatiHI. It is convenient at this stage to evaluate some of the higher
derivatives of Y that are required in the post-buckling analysis. This is for two reasons. First
tbey follow naturally from the above diferentiation proeess, but secondly and more important,
we thus avoid possible confusion over a significant notational change that follows later. The
derivatives are to be evaluated at the critical point C.

Thus, differentiating eqn (17) once with respect to Qz and evaluating at C we obtain,

d
3
y IC

dQzj =0.

This can be quickly confirmed from symmetry considerations. Differentiatilll a second time
before evaluation gives,

(21)

on evaluation at C. Substituting now from the known derivatives we find, perhaps rather
surprisingly, that the leading two terms of the right-hand side can be neglected according to the
assumptions for moderate rise. (HlLf'ec I, etc. This suggests a result that is later confirmed,
tbat no derivatives of the original potential function (written in terms of ql and Q2) of order
higher than quadratic are required to find the post-buckling path cW'Vature. Thus the dominant
feature of arch behaviour is the enforced geometry change which arises from the constraint
condition.

We thus obtain tho result for the fourth derivative

and substitution of the general form for pC of eqn (18) gives,

d4Vle .,,481
dQz4 = -721fll}'

We see that the derivative is not dependent on the pre-stress amplitude Ao.

(22)

2.S Post-buck/iIIg allalysis
At this stage it is rewarding to retlect on just what we know about the response of the

system. This is summarised schematk:a11y in Fag. 3. The constraint condition pves a cW'Ved
surface in p.Q.-Qz space, on which all aDowabie equilibrium states must lie. By symmetry, the
surface forms part of a complete cyUnder which recuts the Q. axis at Q. = +H. but we show
here the range of validity of the present analysis in which Q" remains s.-valued. We note
also that the cylinder extends indefinitely in both 4.irections to P = +1» and -I».

The fundamental equilibrium state corresponds to a path lying on the cylinder at Q, = - H
as shown, which becomes unstable at, or just above, the critieaJ point C where p = pC, We
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Fig. 3. Information gained from the linear eigenvalue analysis.

cannot yet say anything about the stability of the critical point itself, nor of the nature of the
post-buckling equilibrium path which. by a basic theorem of elastic stability must pa$S through
C. These must wait for the post-buckling analysis for clarification.

But the post-buckling path must have a zero slope because of the inherent symmetry. and
assuming that it has a non·zero curvature we can therefore expect either a cusp or a dual cusp
catastrophe at C. We shall call on the results of our general theory to determine the curvature.

Obligatory notational change. The general results of[S] are derived using a potential
function which here would be written as,

V= V(02. P).

This differs in two significant ways from the form used in the eiaenvalue aaaly.sis. Fintw~have
no variation with respect to q" so we must assume that at this stage q. is fuUy replaced by its
Taylor expansion in terms of Q2' developed from the constraint condition. Secondly, we see
that the load P must now be considered as a variable, since a derivative of V with respect toP
is required in the post-buckling analysis. We can, however, make use of the differentiations of
the eigenvalue analysis, but subject to a change of notation.

Thus, inspecting the earlier differentiation of V, we find that full derivatives with respect to
Q2' those on the l.h.s. side of eqns (16) and (17) for example, must DOW be wriUen as partial
derivatives, since P is no longer assumed constant. On the other hand, partial differentiation
with respect to Q2 by this stage implies varying q.. since the constraint condition is now
automatically utisfied. The meaning of the partial ais thus significantly altered.

Post-buckling path curvature. With the notational change, we have the fourth derivative,

(23)

from eqn (22), and to find the only outstanding necessary derivative we differentiate eqn (17)
with respect to P. This gives,

(24)
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We can therefore immediately write the curvature of the post-buckling path as

4SS

(25)

using ({S] p. 18S) with ", =Q2' The curvature is negative, so we have an unstable-symmetric
point of bifurcation at a dual cusp catastrophe. We note that the curvature is not dependent on
the amount of initial pre-stress Ao•

2.6 Comparison with the true perfect response
We are now in a position to complete the picture of Fig. 3, and to compare this with the

known response of the perfect arch. We consider here only the arch formed from an initially
straight strut.

From symmetry, the paths clearly must be as shown on the left of Fig. 4. We have a trivial
fundamental solution Q. = - H, Q2 = 0, together with its mirror image Q, = H, Q2 = 0, and the
constraint condition generates a cylinder extending to P =±co. The unstable post-buckling path
forms a closed loop on the cylinder. The system, on reaching the unstable critical state C or its
reflection, snaps dynamically to the opposite trivial stable state, in accordance with the
constraint condition.

We contrast this picture with the true response of the shallow arch, shown on the right of
Fig. 4. The major difference is the form of the fundamental path; now, with the reintroduction
of extensibility or higher harmonics, the arch can display limiting behaviour in a symmetric
mode (Q2 = 0), giving a highly non-linear, non-trivial path. The limit points are of course already
unstable with respect to Q2' Clearly we cannot now represent the constraint condition in
any simple way.

But the post-buckling behaviour is essentially the same, and it is precisely the trivial nature
of our fundamental path that gives such simple results. We might suppose that the further apart
that the critical bifurcation and limit points are, the more accurate the analysis is likely to be.
We note finally that an elastically tied arch can be adjusted, by introducing an extra control
parameter, so that the two critical states coincide. This gives the hill-top branching point, which
has been investigated recently as an illustration of a hyperbolic umbilic catastrophe[8-10].

2.7 Imperfection-sensitivity analysis
The imperfection-sensitivity of the arch is here investigated following Roorda's classic

formulation, by off-setting the load a small amount d. from the centre-line; here we take f as
positive for off-sets in the positive sense of x. The strain energy is clearly unaffected by this

Fig. 4. Comparison between the equilibrium paths of the perfect inextensional model and the true arch
response.
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introduction of a second control parameter, but the load now drops a further small amount 8w
which is given by the approximation,

dW\!5w""'EL- .
dx x=1./2

We can replace this by a rigorous equality, by assuming that the load is applied a distance EL
along a rigid straight bar, rigidly fixed to the arch at the centre. Alternatively we can assume
that E is small enough so that, in comparison with the earlier assumptions, such rigour is
unnecessary and the equality is valid for a simple load off-set. We note that experimentally, the
former usually applies.

The potential energy of the load is changed by this additional drop, and we have,

v ~ U - P [ql + ELw'(t)]
~ U - P(q. - 21J'EQ:J, (26)

using the assumed deftected shape (3). Remembering the results from the constraint condition.
we can immediately write down the additional necessary coefficient for the imperfection­
sensitivity analysis as,

(27)

where C refers to the critical state of the perfect system E=O. Substituting noW in the general
result of ([5] p. 187) we can obtain the coefficient of the two-thirds power law failure locus,

where P is now the critical load of an imperfect system, as

(28)

on substititution from eqns (23), (24) and (26).
The arch formed from an initially straight strut. Here Ao=0 as before, and we thus have the

two-thirds power-law imperfection-sensitivity relationship,

Nondimensionalizing with respect to pC, given by equation (19), we have,

(29)

The arch with no initial pre-stress. Here Ao = - H as before, giving,
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Again nondimensionalizinc witb respect to pC, Jiven here by eqn (20), we have,

3. COMPARISON WITH ROORDA'S THEORY

Roorda'S tbeory[1-41, repeated by Huseyin[61, applies only to the pure stress·free arcb and
produces ratber leqtby results, due to the inclusion of axial compressibility. Because of this
inclusion, they may seem to be offering a more realistic analysis. This may not necessarily be
the case, however, because the pre·buckJiq nonlinearity of the sbaUow arches under discussion
is primarily due to bigber barmonics, rather than the axial compressibility: like us, they only
consider two harmonic amplitudes.

If we let EA tend to infinity in Roorda's result for the critical load pC, we find it then has
the same alaebraic form as our (20) with the different numerical factor 6417'. His result is
therefore 1.032 times our own, and the two theories ue in close agreement. The very small
discrepency is likely to be due to the difference in assumed initial shapes, our arch beinc
sinusoidal and Roorda's circular; we note that the first fourier component of a circular arch
would exhibit a slightly different H value from that of tbe arch itself.

If we treat Roorda's imperfection·sensitivity result in the same way it becomes absolutely
identical to our first eqn (30). This is quite remarkable consideriq the rontrasting approaches
and the (small) difference in critical loads. Roorda's result has been shown by him to be in good
agreement with his test on a stress-free arch.

4. COMPARISON WITH EXPERIMENTS

Our result for pC as a function of Ao is shown in Fig. 5 and compared with some
available experimental values. Also shown is the result of a simple heuristic 'back of an

"w
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FII. S. Comparison between the present dleory aad the experimeatl of Roorda[l-4] and N. Heath. TIle
variation of pC with the mapitude of the prestress.
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envelope' approach: this assumes that there is no change of bending moment in the fundamen­
tal state, and simply takes moments about the crown for one half of the arch, setting finally the
horizontal abutment thrust equal to the second Euler load of the corresponding strut.

The comparison with Roorda's two experiments cannot be expected to be any better than it
is, because our calculations are based only on his published nominal crosSwSection dimensions
(the I of the cross-section is of course very sensitive to the assumed depth) and on a nominal
Young's Modulus for steel E =30 x 10~ Ib/in2

• Values used were for the pure un-stressed arch,
H = 1.55 in, L =24 in, with a rectangular cross-section of depth 1/32 in and breadth 1in: for the
buckled strut, H =1.5 in, L =24 in. with a rectaagular cross-section of depth 1/16 in and breadth
1in. We have ignored any (1- vi Poisson's ratio effect in both cases.

The experiments of N. Heath on a series of shallow prestressed arches were conducted as a
preliminary investigation at Imperial CoUege London under the supervision of the second
author: better coretation could be expected here, because theEl of the section was obtained
experimentally by a direct bending test The trend of the experimental results nicely confirms
the validity of our theory.

Our imperfection-sensitivity results were also found to be in good agreement with the tests
of N. Heath, and we show finally in Fig. 6 a comparison with one of the original experiments of
Roorda[l-4). This was on an arch made from a buckled strut, and has not previously been
compared with a theoretical solution. Agreement is quite good on both diagrams, and on the
lower one is certainly bettor than that obtained if we just ignore the prestress and use the
results of a pure arch. In the top loaddeftection diagram the validity of our theory is restricted
to the fairly small deftection range, as we would expect from a local bifurcational analysis. The
small discrepancy in the lower imperfection-sensitivity diagram could easily be due to the
difficulty in assessing the precise top of the cusp.

S. CONCLUDING REMARKS
The simple inextensional theory that we have presented here for the buckling and post­

buckling of shallow prestressed arches seems to agree well with the existing theoretical and
experimental evidence. Useful neat equations for the bifurcation load and the two-thirds
power-law impedection-sensitivity are given. It is suggested that more experiments are needed,
with careful calibration tests, to explore more fully the complete range of prestress magnitude.
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Fig. 6. Comparison between the present theory and the experiment of Roorda[l-4} on a prestressed arch
made from a buckled strut.



Bucklina and imperfectioD-seasilivity of arches 459

Axial compressibility forms an intearal part of most studies of shallow arches[1l-14]. We
note however that an inextensional form is taken to define the perfect system, and com·
pressibility included as an extra dearee of control. in a recent contribution of Oran[lS], but for
a pressure-loaded arch with clamped ends.
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